Skip to the content.
Accepted Papers
-
Controllable Attack and Improved Adversarial Training in Multi-Agent Reinforcement Learning
Outstanding Paper Award
Contributed talk (09:45 - 10:00)
Xiangyu Liu; Souradip Chakraborty; Furong Huang
-
Differentially Private Bias-Term only Fine-tuning of Foundation Models
Outstanding Paper Award
Contributed talk (16:30 - 16:45)
Zhiqi Bu; Yu-Xiang Wang; Sheng Zha; George Karypis
-
zPROBE: Zero Peek Robustness Checks for Federated Learning
Outstanding Paper Award
Contributed talk (17:00 - 17:15)
Zahra Ghodsi; Mojan Javaheripi; Nojan Sheybani; Xinqiao Zhang; Ke Huang; Farinaz Koushanfar
-
Revisiting Robustness in Graph Machine Learning
Oral
Contributed talk (09:30 - 09:45)
Lukas Gosch; Daniel Sturm; Simon Geisler; Stephan Günnemann
-
DensePure: Understanding Diffusion Models towards Adversarial Robustness
Oral
Contributed talk (15:30 - 15:40)
Zhongzhu Chen; Kun Jin; Jiongxiao Wang; Weili Nie; Mingyan Liu; Anima Anandkumar; Bo Li; Dawn Song
-
TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations
Oral
Contributed talk (16:45 - 17:00)
Dylan Z Slack; Satyapriya Krishna; Himabindu Lakkaraju; Sameer Singh
- Take 5: Interpretable Image Classification with a Handful of Features
Thomas Norrenbrock; Marco Rudolph; Bodo Rosenhahn
- Membership Inference Attacks via Adversarial Examples
Hamid Jalalzai; Elie KADOCHE; Rémi Leluc; Vincent Plassier
- Scalable and Improved Algorithms for Individually Fair Clustering
Mohammadhossein Bateni; Vincent Cohen-Addad; Alessandro Epasto; Silvio Lattanzi
- Not All Knowledge Is Created Equal: Mutual Distillation of Confident Knowledge
ZIYUN LI; Xinshao Wang; Di Hu; Neil M. Robertson; David A. Clifton; Christoph Meinel; Haojin Yang
- Just Following AI Orders: When Unbiased People Are Influenced By Biased AI
Hammaad Adam; Aparna Balagopalan; Emily Alsentzer; Fotini Christia; Marzyeh Ghassemi
- Towards Algorithmic Fairness in Space-Time: Filling in Black Holes
Cheryl Brooks; Aritra Guha; Subhabrata Majumdar; Divesh Srivastava; Zhengyi Zhou
- COVID-Net Biochem: An Explainability-driven Framework to Building Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19 Patients from Clinical and Biochemistry Data
Hossein Aboutalebi; Maya Pavlova; Mohammad Javad Shafiee; Adrian Florea; Andrew Hryniowski; Alexander Wong
- On the Feasibility of Compressing Certifiably Robust Neural Networks
Pratik Vaishnavi; Veena Krish; Farhan Ahmed; Kevin Eykholt; Amir Rahmati
- When Fairness Meets Privacy: Fair Classification with Semi-Private Sensitive Attributes
Canyu Chen; Yueqing Liang; Xiongxiao Xu; Shangyu Xie; Yuan Hong; Kai Shu
- Visual Prompting for Adversarial Robustness
Aochuan Chen; Peter Lorenz; Yuguang Yao; Pin-Yu Chen; Sijia Liu
- Is the Next Winter Coming for AI?The Elements of Making Secure and Robust AI
Joshua Harguess
- Attack-Agnostic Adversarial Detection
Jiaxin Cheng; Mohamed E. Hussein; Jayadev Billa; Wael AbdAlmgaeed
- Provable Membership Inference Privacy
Zachary Izzo; Jinsung Yoon; Sercan O Arik; James Zou
- Anonymization for Skeleton Action Recognition
Saemi Moon; Myeonghyeon Kim; Zhenyue Qin; Yang Liu; Dongwoo Kim
- Men Also Do Laundry: Multi-Attribute Bias Amplification
Dora Zhao; Jerone Theodore Alexander Andrews; Alice Xiang
- Cold Posteriors through PAC-Bayes
Konstantinos Pitas; Julyan Arbel
- Certified Defences Against Adversarial Patch Attacks on Semantic Segmentation
Maksym Yatsura; Kaspar Sakmann; N. Grace Hua; Matthias Hein; Jan Hendrik Metzen
- Bias Amplification in Image Classification
Melissa Hall; Laurens van der Maaten; Laura Gustafson; Maxwell Jones; Aaron Bryan Adcock
- Hybrid-EDL: Improving Evidential Deep Learning for Uncertainty Quantification on Imbalanced Data
Tong Xia; Jing Han; Lorena Qendro; Ting Dang; Cecilia Mascolo
- Indiscriminate Data Poisoning Attacks on Neural Networks
Yiwei Lu; Gautam Kamath; Yaoliang Yu
- Finding Safe Zones of Markov Decision Processes Policies
Michal Moshkovitz; Lee Cohen; Yishay Mansour
- On the Importance of Architectures and Hyperparameters for Fairness in Face Recognition
Samuel Dooley; Rhea Sanjay Sukthanker; John P Dickerson; Colin White; Frank Hutter; Micah Goldblum
- Poisoning Generative Models to Promote Catastrophic Forgetting
Siteng Kang; Xinhua Zhang
- On Causal Rationalization
Wenbo Zhang; TONG WU; Yunlong Wang; Yong Cai; Hengrui Cai
- A View From Somewhere: Human-Centric Face Representations
Jerone Theodore Alexander Andrews; Przemyslaw Joniak; Alice Xiang
- REGLO: Provable Neural Network Repair for Global Robustness Properties
Feisi Fu; Zhilu Wang; Jiameng Fan; Yixuan Wang; Chao Huang; Xin Chen; Qi Zhu; Wenchao Li
- What Makes a Good Explanation?: A Harmonized View of Properties of Explanations
Zixi Chen; Varshini Subhash; Marton Havasi; Weiwei Pan; Finale Doshi-Velez
- On the Impact of Adversarially Robust Models on Algorithmic Recourse
Satyapriya Krishna; Chirag Agarwal; Himabindu Lakkaraju
- Participatory Systems for Personalized Prediction
Hailey James; Chirag Nagpal; Katherine A Heller; Berk Ustun
- Differentially Private Gradient Boosting on Linear Learners for Tabular Data
Saeyoung Rho; Cedric Archambeau; Sergul Aydore; Beyza Ermis; Michael Kearns; Aaron Roth; Shuai Tang; Yu-Xiang Wang; Steven Wu
- A Deep Dive into Dataset Imbalance and Bias in Face Identification
Valeriia Cherepanova; Steven Reich; Samuel Dooley; Hossein Souri; John P Dickerson; Micah Goldblum; Tom Goldstein
- Evaluating the Practicality of Counterfactual Explanations
Nina Spreitzer; Hinda Haned; Ilse van der Linden
- Certified Training: Small Boxes are All You Need
Mark Niklas Mueller; Franziska Eckert; Marc Fischer; Martin Vechev
- Group Excess Risk Bound of Overparameterized Linear Regression with Constant-Stepsize SGD
Arjun Subramonian; Levent Sagun; Kai-Wei Chang; Yizhou Sun
- Strategy-Aware Contextual Bandits
Keegan Harris; Chara Podimata; Steven Wu
- Addressing Bias in Face Detectors using Decentralised Data collection with incentives
Ahan M R; Robin Lehmann; Richard Blythman
- Learning to Take a Break: Sustainable Optimization of Long-Term User Engagement
Eden Saig; Nir Rosenfeld
- Explainability in Practice: Estimating Electrification Rates from Mobile Phone Data in Senegal
Laura State; Hadrien Salat; Stefania Rubrichi; Zbigniew Smoreda
- Distributed Differential Privacy in Multi-Armed Bandits
Sayak Ray Chowdhury; Xingyu Zhou
- Individual Privacy Accounting with Gaussian Differential Privacy
Antti Koskela; Marlon Tobaben; Antti Honkela
- Hidden Poison: Machine Unlearning Enables Camouflaged Poisoning Attacks
Jimmy Z. Di; Jack Douglas; Jayadev Acharya; Gautam Kamath; Ayush Sekhari
- PINTO: Faithful Language Reasoning Using Prompt-Generated Rationales
PeiFeng Wang; Aaron Chan; Filip Ilievski; Muhao Chen; Xiang Ren
- A Theory of Learning with Competing Objectives and User Feedback
Pranjal Awasthi; Corinna Cortes; Yishay Mansour; Mehryar Mohri
- Accelerating Open Science for AI in Heliophysics
Dolores Garcia; Paul James Wright; Robert Jarolim; Mark CM Cheung; Meng Jin; James Parr
- FL-Talk: Covert Communication in Federated Learning via Spectral Steganography
Huili Chen; Farinaz Koushanfar
- Honest Students from Untrusted Teachers: Learning an Interpretable Question-Answering Pipeline from a Pretrained Language Model
Jacob Eisenstein; Daniel Andor; Bernd Bohnet; Michael Collins; David Mimno
- Just Avoid Robust Inaccuracy: Boosting Robustness Without Sacrificing Accuracy
Yannick Merkli; Pavol Bielik; PETAR TSANKOV; Martin Vechev
- Interactive Rationale Extraction for Text Classification
Jiayi Dai; Mi-Young Kim; Randy Goebel
- Few-shot Backdoor Attacks via Neural Tangent Kernels
Jonathan Hayase; Sewoong Oh
- Information-Theoretic Evaluation of Free-Text Rationales with Conditional $\mathcal{V}$-Information
Hanjie Chen; Faeze Brahman; Xiang Ren; Yangfeng Ji; Yejin Choi; Swabha Swayamdipta
- Uncertainty-aware predictive modeling for fair data-driven decisions
Patrick Kaiser; Christoph Kern; David Rügamer
- GFairHint: Improving Individual Fairness for Graph Neural Networks via Fairness Hint
Paiheng Xu; Yuhang Zhou; Bang An; Wei Ai; Furong Huang
- Cooperation or Competition: Avoiding Player Domination for Multi-target Robustness by Adaptive Budgets
Yimu Wang; Dinghuai Zhang; Yihan Wu; Heng Huang; Hongyang Zhang
- A Closer Look at the Intervention Procedure of Concept Bottleneck Models
Sungbin Shin; Yohan Jo; Sungsoo Ahn; Namhoon Lee
- Striving for data-model efficiency: Identifying data externalities on group performance
Esther Rolf; Ben Packer; Alex Beutel; Fernando Diaz
- Physically-Constrained Adversarial Attacks on Brain-Machine Interfaces
Xiaying Wang; Rodolfo Octavio Siller Quintanilla; Michael Hersche; Luca Benini; Gagandeep Singh
- Training Differentially Private Graph Neural Networks with Random Walk Sampling
Morgane Ayle; Jan Schuchardt; Lukas Gosch; Daniel Zügner; Stephan Günnemann
- Data Redaction from Pre-trained GANs
Zhifeng Kong; Kamalika Chaudhuri
- A Brief Overview of AI Governance for Responsible Machine Learning Systems
Navdeep Gill; Abhishek Mathur; Marcos V. Conde
- Private Data Leakage via Exploiting Access Patterns of Sparse Features in Deep Learning-based Recommendation Systems
Hanieh Hashemi; Wenjie Xiong; Liu Ke; Kiwan Maeng; Murali Annavaram; G. Edward Suh; Hsien-Hsin S. Lee
- Benchmarking the Effect of Poisoning Defenses on the Security and Bias of the Final Model
Nathalie Baracaldo; Kevin Eykholt; Farhan Ahmed; Yi Zhou; Shriti Priya; Taesung Lee; Swanand Kadhe; Yusong Tan; Sridevi Polavaram; Sterling Suggs; Yuyang Gao; David Slater
- A Fair Loss Function for Network Pruning
Robbie Meyer; Alexander Wong
- Quantifying Social Biases Using Templates is Unreliable
Preethi Seshadri; Pouya Pezeshkpour; Sameer Singh
- Real world relevance of generative counterfactual explanations
Swami Sankaranarayanan; Thomas Hartvigsen; Lauren Oakden-Rayner; Marzyeh Ghassemi; Phillip Isola
- On the Robustness of deep learning-based MRI Reconstruction to image transformations
Jinghan Jia; Mingyi Hong; Yimeng Zhang; Mehmet Akcakaya; Sijia Liu
- Denoised Smoothing with Sample Rejection for Robustifying Pretrained Classifiers
Fatemeh Sheikholeslami; Wan-Yi Lin; Jan Hendrik Metzen; Huan Zhang; J Zico Kolter
- An Analysis of Social Biases Present in BERT Variants Across Multiple Languages
Parishad BehnamGhader; Aristides Milios
- When Personalization Harms: Reconsidering the Use of Group Attributes of Prediction
Vinith Menon Suriyakumar; Marzyeh Ghassemi; Berk Ustun
- Responsible Reasoning with Large Language Models and The Impact of Proper Nouns
Sumit Kumar Jha; Rickard Ewetz; Alvaro Velasquez; Susmit Jha
- Fairness-aware Missing Data Imputation
Yiliang Zhang; Qi Long
- But Are You Sure? Quantifying Uncertainty in Model Explanations
Charles Thomas Marx; Youngsuk Park; Hilaf Hasson; Bernie Wang; Stefano Ermon; Luke Huan
- On the Trade-Off between Actionable Explanations and the Right to be Forgotten
Martin Pawelczyk; Tobias Leemann; Asia Biega; Gjergji Kasneci
- A Stochastic Optimization Framework for Fair Risk Minimization
Andrew Lowy; Sina Baharlouei; Rakesh Pavan; Meisam Razaviyayn; Ahmad Beirami
- Beyond Protected Attributes: Disciplined Detection of Systematic Deviations in Data
Adebayo Oshingbesan; Winslow Georgos Omondi; Girmaw Abebe Tadesse; Celia Cintas; Skyler Speakman
- Towards Reasoning-Aware Explainable VQA
Rakesh Vaideeswaran; Feng Gao; ABHINAV MATHUR; Govind Thattai
- Learning from uncertain concepts via test time interventions
Ivaxi Sheth; Aamer Abdul Rahman; Laya Rafiee Sevyeri; Mohammad Havaei; Samira Ebrahimi Kahou
- Generating Intuitive Fairness Specifications for Natural Language Processing
Florian E. Dorner; Momchil Peychev; Nikola Konstantinov; Naman Goel; Elliott Ash; Martin Vechev
- Assessing Performance and Fairness Metrics in Face Recognition - Bootstrap Methods
Jean-Rémy Conti; Stephan Clémençon
- Case Study: Applying Decision Focused Learning in the Real World
Shresth Verma; Aditya Mate; Kai Wang; Aparna Taneja; Milind Tambe
- Inferring Class Label Distribution of Training Data from Classifiers: An Accuracy-Augmented Meta-Classifier Attack
Raksha Ramakrishna; György Dán
- Improving Fairness in Image Classification via Sketching
Ruichen Yao; Ziteng Cui; Xiaoxiao Li; Lin Gu